BDF 49 Seeben

Einrichtung: 1996

Lage

Gemarkung: Seeben

Landkreis: Halle (Saale), Stadt

Nutzung:

Ackerland/Grünland

Klima

Höhe über NN: 127 m

mittlere Jahrestemperatur: 1) 9,8 °C (Station Halle-Kröllwitz)

mittlerer Jahresniederschlag: 1) 586 mm (Station Halle-Ammendorf)

Allgemeine Charakteristik

Landschaftseinheit:²⁾ Hallesches Ackerland

Bodenregion:³⁾ Löss- und Sandlösslandschaften

Bodenlandschaft:³⁾ Wettin-Brachwitzer Löss-Hügelländer mit

Bennstedt-Nietlebener Platte

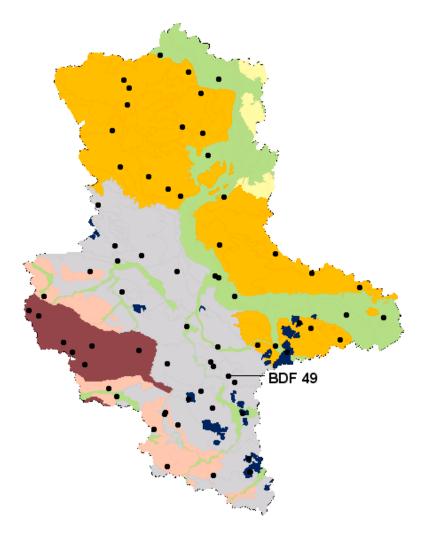
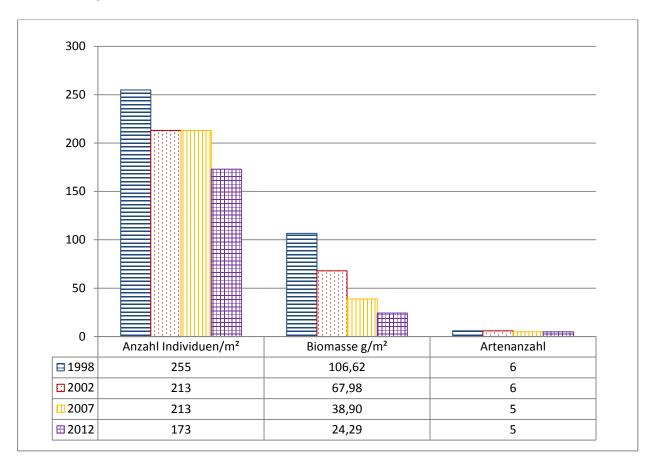


Abb. 1: Karte der Bodenregionen³⁾ mit BDF-Standorten

¹⁾ Daten des Regionalen Klimainformationssystems für Sachsen, Sachsen-Anhalt und Thüringen (ReKIS), Zeitraum 1988 bis 2017


²⁾ aus "Die Landschaftsgliederung Sachsen-Anhalts. Ein Beitrag zur Fortschreibung des Landschaftsprogrammes des Landes Sachsen-Anhalt" (Stand 01.01.2001)

³⁾ aus "Bodenatlas Sachsen-Anhalt", Geologisches Landesamt Sachsen-Anhalt, 1999 Weitere Angaben zu Bodenaufbau, -physik und – chemie unter www.lagb.sachsen-anhalt.de

1 Biologische Bodeneigenschaften

1.1 Entwicklung des Regenwurmbesatzes

Bodenzoologische Parameter werden erhoben, weil sie sich in Abhängigkeit vom Bodennutzungsregime sehr schnell ändern und deshalb einen hohen diagnostischen Wert haben.

1.2 Entwicklung der mikrobiellen Biomasse und Bodenatmung

Bodenbiologische Parameter zeigen den Bewirtschaftungseinfluss und sonstige Umwelteinflüsse auf die Bodenchemie an, bevor Ertragsminderungen eintreten. Sie sind deshalb für den <u>vorsorgenden</u> Bodenschutz interessant.

Datum Probennahme	Tiefe cm	Basalatmung µg CO ₂ -C/g TS/h	Mikrobielle Biomasse μg Cmik/ g TS	Metabolischer Quotient CO ₂ ng/µg C mik	Katalasezahl ml O ₂ /min
07.03.1997	0-20	1,35	217,67	6,20	14,12
23.03.2001	0-20	0,98	250,80	3,91	10,23
04.04.2005	0-20	1,15	326,12	3,53	13,16
26.03.2009	0-20	0,92	142,91	6,44	11,25
08.04.2013	0-20	2,11	303,60	6,95	13,02
10.03.2017	0-20	1,02	257,19	3,97	7,37

Basalatmung: Kohlendioxid (CO₂)-Abgabe der Bodenorganismen

Mikrobielle Biomasse: Anteil lebender, physiologisch aktiver Mikroorganismen im Boden

Metabolischer Quotient: zeigt die Effektivität des mikrobiellen Stoffwechsels an;

je niedriger der Quotient, desto effizienter die mikrobiellen Umsatzleistungen

Katalasezahl: Maß für die Enzymaktivität aerober Organismen im Boden;

ist die Katalasezahl hoch, so deutet dies auf eine hohe Anzahl von Bodenorganismen hin

2 Chemische Bodeneigenschaften

2.1 Gehalt an organischen Schadstoffen

Datum	Tiefe	beta – HCH	HCB	PCB ₆	Benzo(a)pyren	PCDD/F
Probennahme	cm	mg/kg TM	mg/kg TM	mg/kg TM	mg/kg TM	ng I-TEQ (NATO/CCMS)/kg TM
16.05.2003	0-25					13,50
17.10.2006	0-10	0,00050	0,00200	0,00595	0,03237	
17.10.2006	10-30	0,00050	0,00393	0,00443	0,02966	
10.10.2012	0-10	0,00050	0,00105	0,00748	0,01568	
10.10.2012	10-30	0,00050	0,00107	0,00560	0,03073	
20.06.2017	0-10	0,00050	0,00110	0,00400	0,02900	
20.06.2017	10-20	0,00050	0,00110	0,00450	0,03300	
20.06.2017	0-20		_			

Boden-Dauerbeobachtungsflächen in Sachsen-Anhalt – BDF 49

2.2 Maßnahmen-, Prüf- und Vorsorgewerte nach Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV)

Stoff	Wirkungspfad	Bodennutzungsart	Kategorie	Wert
Dioxine/Furane (PCDD/F)	Boden - Mensch	Kinderspielflächen	Maßnahmenwert	100 ng I-TEQ (NATO/CCMS)/kg TM
	Boden - Mensch	Park- u. Freizeitanlagen	Maßnahmenwert	1000 ng I-TEQ (NATO/CCMS)/kg TM
Benzo(a)pyren (PAK)	Boden - Mensch	Kinderspielflächen	Prüfwert	2 mg/kg TM
	Boden - Mensch	Park- u. Freizeitanlagen	Prüfwert	10 mg/kg TM
	Boden - Nutzpflanze	Ackerbau, Nutzgarten	Prüfwert	1 mg/kg TM
Hexachlorbenzol (HCB)	Boden - Mensch	Kinderspielflächen	Prüfwert	4 mg/kg TM
	Boden - Mensch	Park- u. Freizeitanlagen	Prüfwert	20 mg/kg TM
beta-Hexachlorcyclohexan (beta-HCH)	Boden - Mensch	Kinderspielflächen	Prüfwert	5 mg/kg TM
	Boden - Mensch	Park- u. Freizeitanlagen	Prüfwert	25 mg/kg TM
Polychlorierte Biphenyle (PBC ₆)	Boden - Mensch	Kinderspielflächen	Prüfwert	0,4 mg/kg TM
	Boden - Mensch	Park- u. Freizeitanlagen	Prüfwert	2 mg/kg TM
	Boden - Nutzpflanze	Grünland	Maßnahmenwert	0,2 mg/kg TM

3 Depositionsmessungen

Die quantitative Abgrenzung der über den Luftpfad auf die BDF eingetragenen Stoffe gegenüber anderen Einträgen, z. B. im Zuge von Bewirtschaftungsmaßnahmen, erfordert die Messung der Ablagerung (Deposition) auf den Boden.

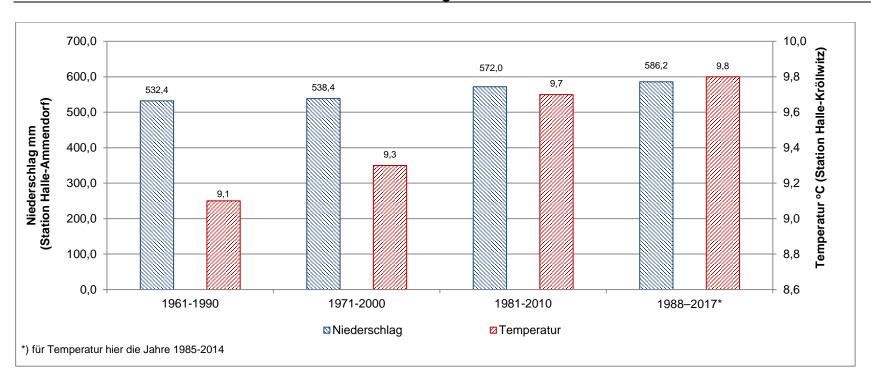
Über die Deposition werden erhebliche Stoffmengen aus der Atmosphäre auf und in den Boden eingetragen. Hierzu zählen auch Luftschadstoffe. Für bestimmte Schadstoffe (z. B. persistente organische Stoffe POP) ist die Deposition sogar die einzige Ursache für ihre ubiquitäre Verbreitung in Böden. Die Messung, Kenntnis und Minderung der Depositionsraten ist daher ein wichtiger Bestandteil des Bodenschutzes. Gemessen wird die Deposition mit Depositionssammlern (z.B. BERGERHOFF-Sammler), das sind im Prinzip nach oben offene Töpfe oder Trichter mit einem Sammelgefäß. Für die Messung der gesamten Deposition ist die Auffangeinheit während der gesamten Sammelperiode durchgehend gegenüber der Atmosphäre geöffnet (Bulk-Sammler).

3.1 Inhaltstoffe des Staubniederschlages – gemessen mit BERGERHOFF-Sammlern

	Staubnie Schutz v Belästi erheblicl	sionswert für derschlag zum vor erheblichen igungen oder nen Nachteilen TA Luft)	1999	2011
Staubnieder- schlag g/(m ² d)		0,35	0,11	0,08
		rusätzliche Fracht BBodSchV	1999	2011
Inhaltsstoffe	g/(ha a)	μg/(m² d)	μg/(m² d)	μg/(m² d)
As			0,40	0,31
Cd	6	1,64	0,13	0,10
Со				0,26
Cr	300	82,19	0,62	1,47
Cu	360	98,63	6,26	6,74
Mn			14,00	19,65
Ni	100	27,40	2,65	1,41
Pb	400	109,59	7,44	4,27
Sb				0,33
TI				0,01
V			0,30	1,43
Zn	1200	328,77	68,41	25,10

3.2 Jahresmittel der Anionen und Kationen in BERGERHOFF-Sammlern

		1999	2011
Cl	kg/(ha a)	5,91	4,89
F ⁻	kg/(ha a)	0,15	0,07
NO ₂	kg/(ha a)	0,37	1,13
NO ₃	kg/(ha a)	9,05	12,85
SO ₄ ²⁻	kg/(ha a)	20,11	14,34
HPO ₄ ²⁻	kg/(ha a)	3,47	3,65
NH ₄ ⁺	kg/(ha a)	6,17	16,75


Boden-Dauerbeobachtungsflächen in Sachsen-Anhalt – BDF 49

		1999	2011
Na⁺	kg/(ha a)	4,05	4,34
K ⁺	kg/(ha a)	16,35	2,56
Ca ²⁺	kg/(ha a)	4,82	2,01
Mg ²⁺	kg/(ha a)	1,06	0,47
N (ohne NO ₂ -N)	kg/(ha a)	6,84	15,92
S	kg/(ha a)	6,72	4,79
Р	kg/(ha a)	1,12	1,18

4 Mittlere Jahrestemperaturen und Niederschläge

Das nachfolgende Diagramm zeigt die 30-jährigen Mittelwerte ab 1961 für Niederschlag und Temperatur für die Messstationen, die der BDF am nähesten liegen. Es handelt sich dabei um Daten aus dem Regionalen Klimainformationssystem für Sachsen, Sachsen-Anhalt und Thüringen der Technischen Universität Dresden, Institut für Hydrologie und Meterologie (ReKIS). Für die Darstellung der Niederschläge sind die korrigierten Niederschlagsmengen verwendet worden.

Boden-Dauerbeobachtungsflächen in Sachsen-Anhalt – BDF 49

