

Biologische Feldarbeiten auf Boden- Dauerbeobachtungsflächen - BDF in Sachsen-Anhalt

- Erfassung der Regenwurmpopulation -

Gliederung

- 1. BDF in Sachsen-Anhalt
- 2. Regenwürmer Funktion, Lebensweise
- 3. Methode der Regenwurmerfassung
- Ergebnisse auf ausgewählten BDF: Anzahl Individuen, Biomasse, Anzahl Arten, Diversität
- 5. Vergleich bei unterschiedlichen Nutzungsarten
- Regenwürmer in Sachsen- Anhalt und Checkliste der Regenwürmer

Boden-Dauerbeobachtungssystem Sachsen-Anhalt

70 Flächen – BDF (ca. 50*50m)

repräsentieren

für Sachsen-Anhalt typische Kombinationen von:

bodenkundlich- geologischen Standortverhältnissen

typischen klimatischen Verhältnissen

Bodennutzungen

Bodenbelastungen

Beobachtet werden Veränderungen der

biologischen, chemischen, physikalischen

Beschaffenheit von Böden

unter der jeweils aktuellen Nutzungsart:

24 Forst- BDF (Nadel-, Laub- und Auenwald)

33 Acker-BDF

10 Grünland- BDF

3 Sonderflächen (Brache, Sukzession)

darunter

6 ehemalige Kippen (Acker, Aufforstung)

Bodenzoologische Untersuchungen

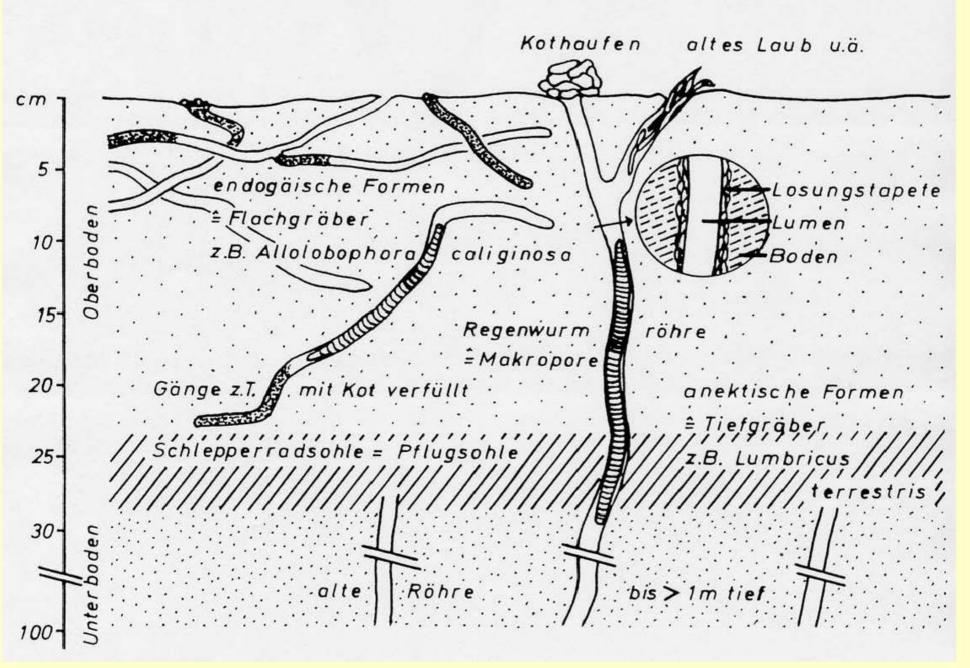
Erfassung der Regenwurmpopulation Regenwürmer (Lumbriciden) mit hohem Indikatorwert

Ziel:

über die Entwicklung bodengebundener Zoozönosen (Abundanz, Artenspektrum, Dominanzstruktrur) Rückschlüsse auf veränderte Umwelt- und Bewirtschaftungseinflüsse (Immissionen, PSM, Bodenbearbeitung) auf Böden zu ziehen.

<u>Lumbriciden - Regenwürmer</u>

- Gruppe der Anneliden (weltweit ca. 18 000 Arten)
- Familie Lumbricidae ca. 400 Arten (Nordhemisphäre)
- in Deutschland 46 Arten, Sachsen-Anhalt 21 Arten
- morphologisch und physiologisch hoch angepasst an Umwelt
- wichtige Glieder des Nährstoffkreislaufes im Boden
- Indikatororganismen f
 ür die gesamte Bodenfauna



Funktionen im Lebensraum:

- Zerkleinerung der toten organischen Substanz-Beschleunigung des Abbaus und des Umsatzes von Stoffen im Ökosystem
- Einarbeitung in Mineralboden- Erhöhung der Bodenfruchtbarkeit
- Auflockerung des Bodengefüges (Wohnröhren)-Förderung der Durchwurzelbarkeit
- Steigerung der Wasserinfiltrationsrate (Röhrensystem)-Verminderung der Bodenerosion
- Erhöhung der Stabilität von Böden durch Bildung von organomineralischen Verbindungen im Darmtrakt der Regenwürmer
- Nahrungsressource

Lebensform- typen (Bouché1977)	epigäisch Streubewohner	anecisch Tiefengräber	endogäisch Horizontale Gr.
Größe Habitus	klein ganzer Körper pigmentiert	groß vorn pigmentiert	mittel ohne Pigmentierung
Lebensraum	Streuauflage und unter Rinde	Bodenprofil von OF bis > 1 m T	Mineralboden, besonders in Wurzelnähe
Grabtätigkeit	Gänge oberflächlich oder fehlend	vertikale, permanente Gänge	horizontale, nicht dauerhafte Gänge
Nahrung	Pflanzenstreu	Pflanzenstreu	org. Substanz
Übliche Zuordnung von Arten	L. rubellus L. castaneus Dendrobaena spp.	L. terrestris Ap. longa	Ap. rosea Ap. caliginosa Al. chlorortica Octolasion spp.

Regenwürmer im Ackerboden

Blätter werden in Wohnröhren gezogen

Methode zur Erfassung der Regenwurmpopulation:

Kombination aus

Handauslese (Graefe 1991, Bauchhenß 1997)

Formalinaustreibung (Graefe 1991, Bauchhenß 1997)

Bestimmung:

Art, Anzahl, Biomasse, Artendiversität

Die Erfassung der Regenwürmer erfolgt im Wesentlichen entsprechend der Vorschriften

DIN ISO- 11 268-3 (2000)

Wirkung von Schadstoffen auf Regenwürmer

DIN ISO- 23 611-1 (2007)

Probenahme von Wirbellosen im Boden – Handauslese und Formalinextraktion von Regenwürmern

Beprobung auf acht Teilflächen je BDF außerhalb der Kernfläche

jeweils 1/8 m² in Ringform

während der aktiven Zeiten (Diapause beachten)

Handauslese aus der organischen Auflage

Austreibung mit Formalin aus dem Mineralboden

Boden einebnen, Bewuchs flach abschneiden,

verdünnte Formalinlösung (0,2%tig)

gleichmäßig auf die Probefläche gießen.

Austreibungszeit 30 Minuten

Regenwürmer durch Formalinlösung gereizt -

steigen quantitativ an die Bodenoberfläche.

Ablesen der Regenwürmer

zum Entkoten in Wasser sammeln

Konservieren in Alkohol

Auf Ackerflächen

Methode nicht anwendbar:

Wurmgänge durch Bodenbearbeitung zerstört können nicht mit der Formalinlösung gefüllt werden

Handauslese bis zur Pflugsohle erforderlich.

Erfassen anecischer Arten durch anschließende Formalinanwendung in der Pflugsohle

vollständige Ermittlung des Regenwurmbesatzes ist nur in Kombination von Handauslese und Austreibung möglich.

Artbestimmung

der in Alkohol konservierten Tiere unter dem Mikroskop

je BDF - 8 Parallelproben, separat bearbeiten

Gewicht der Tiere wird nach Art und Altersstruktur erfasst

Die Bestimmung bis auf das Artniveau erfolgte mit Hilfe der einschlägigen Bestimmungsliteratur: GRAFF, 1953;

ZICSI 1965;

CSUZDI and ZICSI 2003

SIMS and GERARD 1999

Entwicklung der Regenwurmpopulation auf ausgewählten BDF

enge Wechselbeziehungen der Umweltverhältnisse im Lebensraum:

Humus- und Feuchtigkeitsgehalt

Art, Struktur und Temperatur des Bodens

Bodenreaktion (pH- Wert)

Nahrungsangebot

auf allen Standorten limitierender Faktor

Nutzung der Fläche

jede BDF mit individuellen Verhältnissen

Amsdorf	Brache	1997	Kippe
Ziegelroda	Forst	1992	
Schierke	Forst	1995	intensiv (2013)
Steckby	Forst	1997	
Barby	Grünland	1995	intensiv
Klein Wanzleben	Ackerland	1993	intensiv
Pirkau	Ackerland	1996	Kippe

4 Kriterien

- Anzahl der Individuen (pro m²);
- Biomasse (g/m²)
- Anzahl der Arten
- Shannon Wiener Index, als Größe für Biodiversität

BDF Amsdorf – Beispiel für Entwicklung der Population

Bodenregion:

Anthropogene Landschaften/Sonderstandort (Br) ehemalige Außenkippe des Braunkohletagebau Amsdorf ab 1983/84 landwirtschaftliche Nutzung, Brachfläche Aktuell: Kurzumtriebsplantage

3 Untersuchungen 2001 (Tischer) und 2006, 2012 pH- Wert: 7,7

Lumbricus castaneus, L. terrestris, Aporrectodea caliginosa, A. rosea, Dendrobaena octaedra, (Dendrodrilus rubidus)

BDF Amsdorf	2001	2006	2012
Gesamtindividuen- anzahl/m ²	14	125	101
Biomasse g/m ²	3,09	20,22	48,25
Artenanzahl	2	4	5
Artendiversität	0,5	1,01	1,4

BDF Ziegelroda

Bodenregion:

Mesozoische Berg- und Hügelländer mit Löss Rauchschadensfläche,

Salzsäureschäden an Buchen durch Kaliwerk Roßleben (1992 stillgelegt)

pH- Wert: 6,0

deutliche Populationsentwicklung nach der Wiederaufforstung (Eiche, Ahorn, Kirsche).

Aporrectodea rosea, Octolasion tyrtaeum, Dendrobaena octaedra, Dendrodrilus rubidus Lumbricus terrestris

BDF Ziegelroda	1994	1998	2002	2006	2011
Gesamtindividuen- anzahl/m ²	3	80	120	151	202
Biomasse g/m ²	0,09	9,59	28,69	28,31	47,15
Artenanzahl		2	3	2	5
Artendiversität				0,49	1,0

Zunahme von Abundanz und Biomasse; Tischer (2002) Entwicklung setzt sich mit den Ergebnissen bis 2011 fort

BDF Schierke

Bodenregion:

Paläozoische Mittelgebirge und Bergländer Forstfläche im Nationalpark Hochharz, 830 m.ü.NN 100jähriger Fichtenbestand

kaum Auflage, Moos wächst direkt auf Nadeln oder Stein

pH- Wert: 2,8

Dendrobaena octaedra (Dendrodrilus rubidus)

BDF Schierke	1996	2000	2005	2010	2013	2014
Gesamtindividuen- anzahl/m ²	20	12	12	18	13	13
Biomasse g/m ²	1,44	2,29	1,66	1,58	1,02	1,09
Artenanzahl	2	1	1	2	1	1
Arten- diversität		0	0	0,38	0	0

BDF Steckby

Bodenregion:

Flusslandschaften

Forstfläche im Biosphärenreservat

Mittelelbe/Flusslandschaft Elbe

Eichen- Ulmen- Hartholzauenwald

in aktiver Überflutungsaue gelegen

pH-Wert: 4,6

Lumbricus castaneus, L. rubellus, L.terrestris Aporrectodea caliginosa, A. rosea Dendrobaena octaedra, Dendrodrilus rubidus Eiseniella tetraedra/Eiseniella t.intermedia, Octolasion tyrtaeum, Proctodrilus tuberculatus

BDF Steckby	1998	2002	2006	2011	2013
Gesamtindividuen- anzahl/m²	105	247	156	245	235
Biomasse g/m ²	22,15	86,78	45,33	127,63	81,68
Artenanzahl	10	10	8	8	10
Artendiversität	=	2,01	1,83	1,87	2,18

BDF Barby

Bodenregion:

Flusslandschaften

Grünland, Mittelelbegebiet

repräsentativ für Auengrünland der großen Stromtäler

geomorphologisch in altem Stromtal bzw. einer alten

Hochwasserabflussrinne der Saale

Bodenoberfläche ca. 2 m über Niveau des MW der Elbe

Weidenutzung

pH- Wert: 6,4

BDF Barby	2000	2004	2010	2013	2014
Gesamtindividuen- anzahl/m ²	169	76	289	410	77
Biomasse g/m ²	49,82	35,64	119,21	179,6	19,55
Artenanzahl	6	4	4	6	5
Artendiversität	1,45	1,42	1,36	1,58	1,40

Allolobophora chlorotica, Aporrectodea caliginosa, A. rosea, (A. longa),

Lumbricus terrestris, L. rubellus, Proctodrilus tuberculatus

BDF Klein Wanzleben

Bodenregion:

Löss- und Sandlösslandschaften

Ackerland

repräsentiert mit tiefgründiger Löß- Schwarzerde

einen der fruchtbarsten Zuckerrübenstandorte

Sachsen-Anhalts

pH- Wert: 7,4

Lumbricus terrestris,
Aporrectodea caliginosa, A. rosea,

BDF Klein Wanzleben	1998	2002	2007	2012	2013	2014
Gesamt- individuen- anzahl/m ²	68	98	95	51	132	164
Biomasse g/m ²	17,8	9,86	32,15	24,05	34,98	33,89
Artenanzahl	3	2	4	5	5	4
Artendiversität		0,14	1,1	1,46	1,41	1,13

BDF Pirkau

Bodenregion:

Anthropogene Landschaften

Ackerland

1994-96 rekultivierter Kippenstandort des Braunkohlen-Bergbaus

(Absetzer-Hochschüttung bis 2m kulturfähiges Material, Planierung; Schadverdichtung unterhalb des Pflughorizontes)

pH- Wert: 7,7

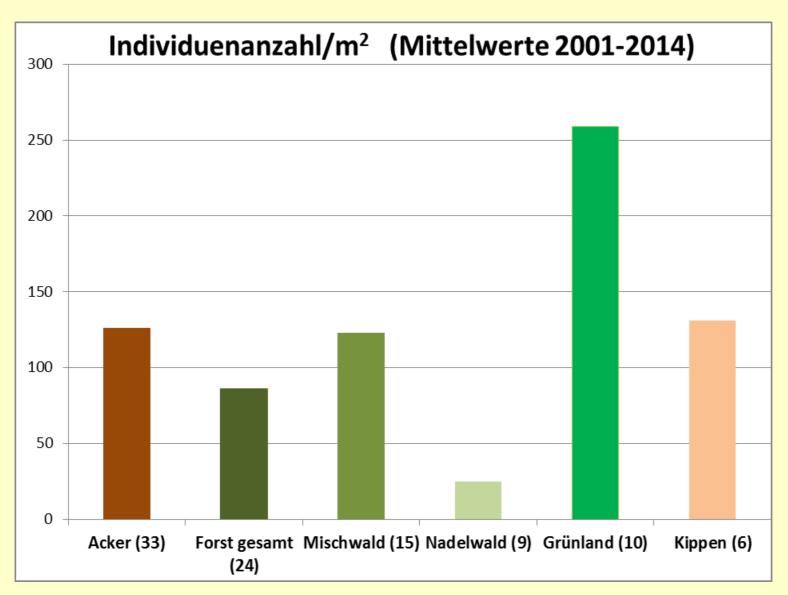
Aporrectodea rosea, Octolasion tyrtaeum Lumbricus terrestris (2013)

BDF Pirkau	1998	2002	2007	2013
Gesamtindividuen- anzahl/m ²	0	0	28	132
Biomasse g/m ²	0	0	14,76	58,62
Artenanzahl	0	0	2	3
Artendiversität	0	0	0,67	0,83

Mittelwerte der Anzahl der Individuen/m² und Biomasse/m² bei unterschiedlichen Nutzungsarten (2001- 2014)

Nutzungsart	Individuen/m ²	g Biomasse/m ²
Acker (33)	126	41,34
Grünland (10)	259	93,83
Forst gesamt (24)	86	24,16
- Laub- u. Mischwald (15)	123	36,8
- Auenwald (4) separat	240	89,59
- Nadelwald (9)	25	5,2
Kippen (6)	131	34,12

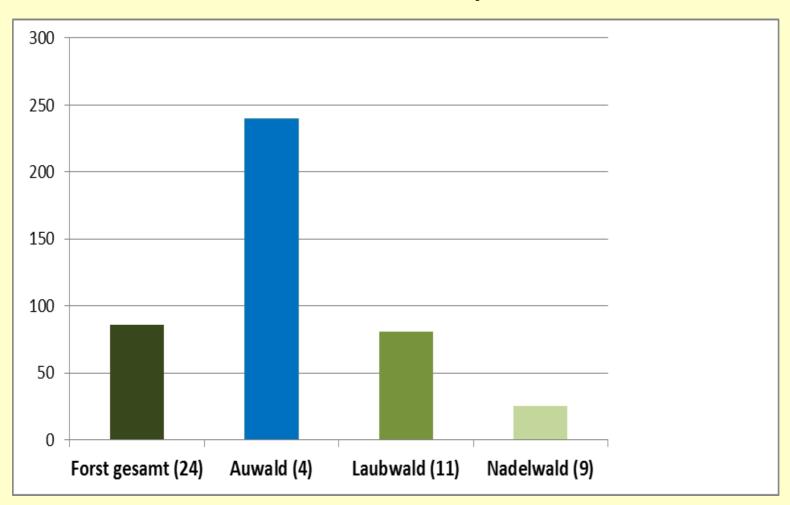
Rangfolge für die Nutzungsarten hinsichtlich der Parameter Anzahl der Individuen/m² und Biomasse/m²:

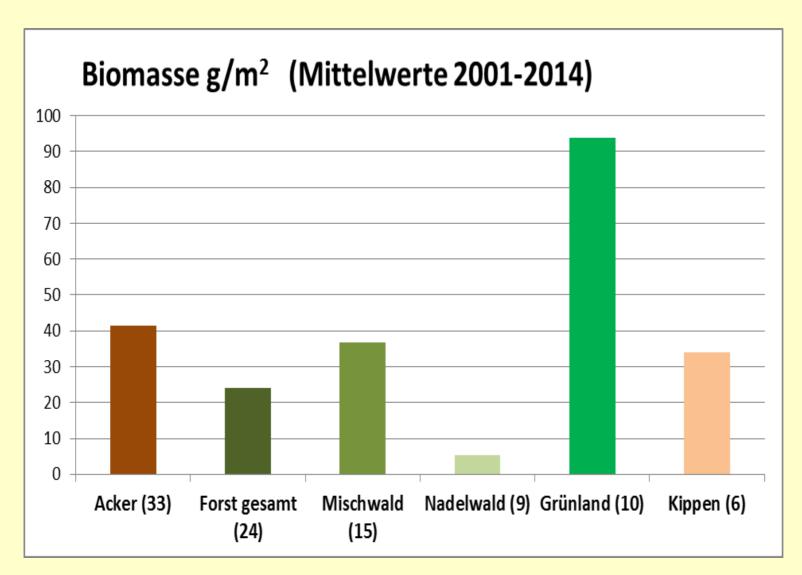

Grünland > Ackerland > Laub-/Mischwald > Nadelwald

Auwald gesondert entspricht Werten vom Grünland

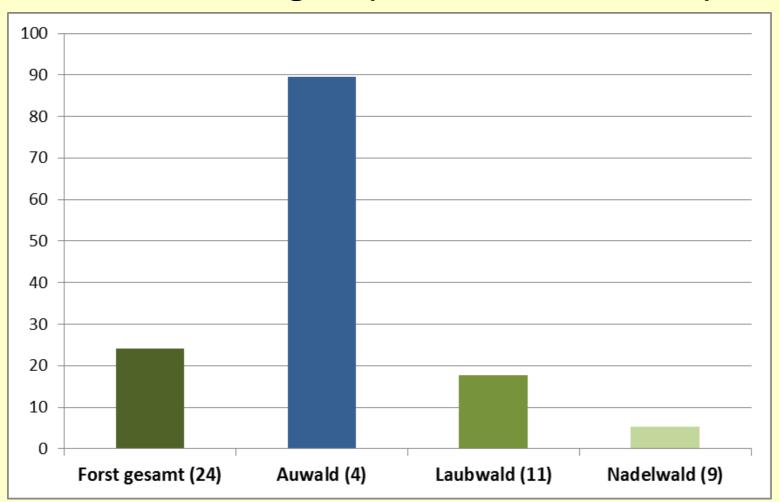
Kippen entsprechen ca. Ackerland bzw. Laub-Mischwald

Rangfolge entspricht den Ergebnissen von TISCHER 2005





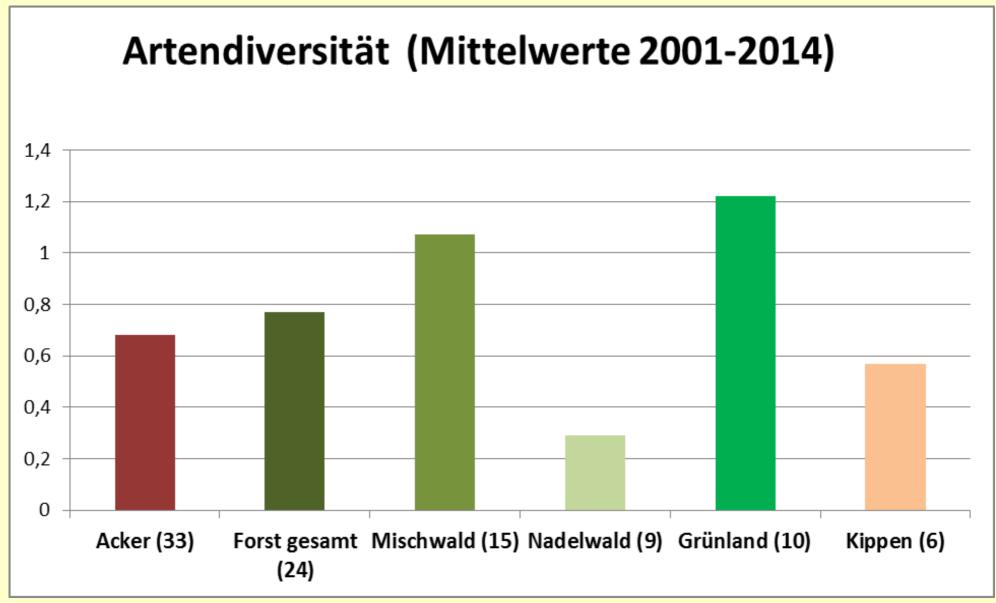
Forst - Anzahl Individuen/m² (Mittelwerte 2001-2014)



Forst - Biomasse g/m² (Mittelwerte 2001-2014)

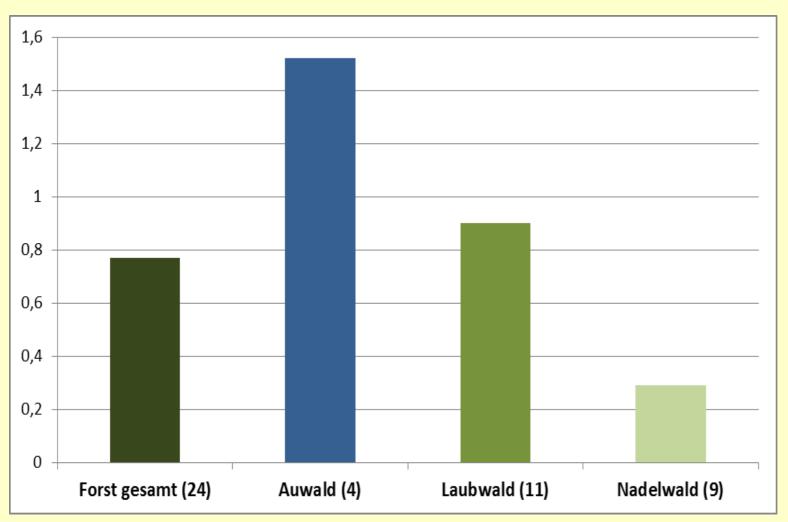
Mittelwerte der Artendiversitäten bei unterschiedlichen Nutzungsarten (2001- 2014)

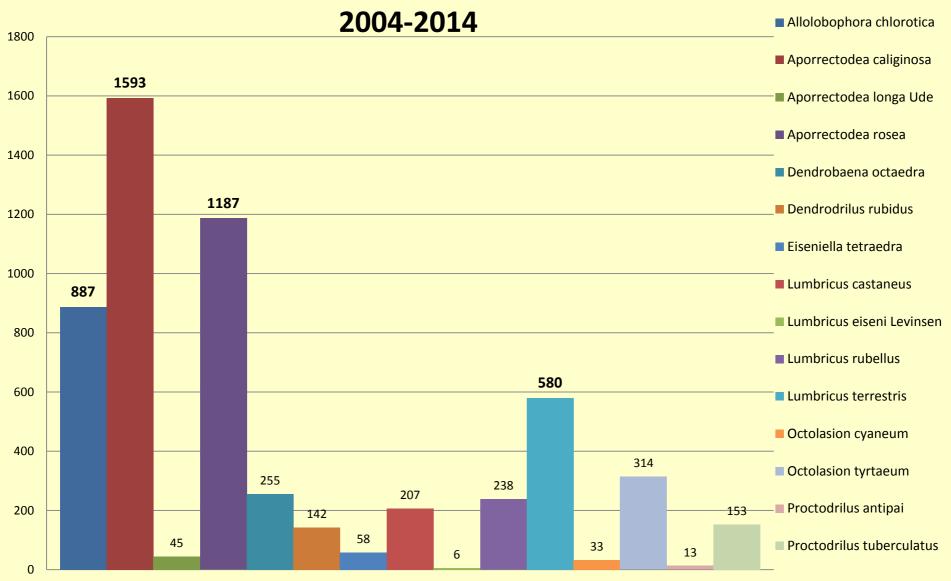
Nutzungsart	Artendiversität
Acker (33)	0,68
Grünland (10)	1,22
Forst gesamt (24)	0,77
- Laub- u. Mischwald (15)	1,07
- Auenwald (4) separat	1,52
- Nadelwald (9)	0,29
Kippen (6)	0,57


Rangfolge für die Nutzungsarten hinsichtlich des Parameters Artendiversität:

Grünland > Laub-/Mischwald > Ackerland > Nadelwald

aber: Auwald mit höchster Diversität


ehemalige Kippenflächen zwischen Ackerland und Laub-/Mischwald



Forst - Artendiversität (Mittelwerte 2001-2014)

Häufigkeit Regenwurmarten auf BDF in Sachsen-Anhalt

Durch Tischer (1994-2005) und Neubert (2004-2012) wurden im Rahmen der Arbeiten auf BDF 21 Regenwurmarten für Sachsen- Anhalt nachgewiesen.

Am häufigsten kommen die Arten Aporrectodea caliginosa, Aporrectodea rosea, Allolobophora chlorotica und Lumbricus terrestris vor. Es sind die Arten mit der größten Anpassungsfähigkeit an die Standortbedingungen, wobei das hohe Vorkommen von A. chlorotica auf die kurze Entwicklungsdauer und Vermehrungsquote und das damit teilweise massenhafte Auftreten dieser Art zurückzuführen ist. Die meisten Regenwurmarten bevorzugen eine neutrale bis schwach alkalische Bodenreaktion. Auf den sauren Waldstandorten finden sich die als acidotolerant geltenden Arten Dendrobaena octaedra und Lumbricus rubellus häufig.

Besonderheiten

Allolobophoridella eiseni (Lumbricus eiseni)

lebt an Holz

auf Forstflächen

Friedrichrode, Günthersberge, Hohes Holz, Arendsee

Proctodrilus antipai nur auf BDF Ladeburg Altmoränenlandschaften; schweres, staunasses Ackerland neben Proctodrilus tuberculatus

Checkliste der Regenwürmer Sachsen-Anhalt

Art	Autor	Nachweis	Synonym
Allolobophora chlorotica	Savigny, 1826	N&T	
Allolobophoridella eiseni	Levinsen, 1884	det. Neubert	Lumbricus eiseni Levinsen,
·			Allolobophora eiseni
Aporrectodea caliginosa	Savigny, 1826	N&T	
incl. A. nocturna	Evans, 1946		
Aporrectodea limicola	Michaelsen, 1890	det. Tischer	
Aporrectodea longa	Ude, 1885	N&T	
Aporrectodea rosea	Savigny, 1826	N&T	
Dendrobaena octaedra	Savigny, 1826	N&T	
Dendrobaena pygmaea	Savigny, 1826	det. Tischer	
Dendrodrilus rubidus	Savigny, 1826	N&T	
Eisenia fetida	Savigny, 1826	det. Tischer	
Eiseniella tetraedra	Savigny, 1826	N&T	
incl. E.t. intermedia	Cernosvitov, 1934		
Fitzingeria platyura	Fitzinger, 1833	det. Tischer	Dendrobaena platyura
Lumbricus baicalensis	Michaelsen, 1900	det. Tischer	
Lumbricus castaneus	Savigny, 1826	N&T	
Lumbricus festivus	Savigny, 1826	det. Tischer	
Lumbricus rubellus	Hoffmeister, 1843	N&T	
Lumbricus terrestris	Linnaeus, 1758	N&T	
Octolasion cyaneum	Savigny, 1826	N&T	
Octolasion tyrtaeum	Savigny, 1826	N&T	
Proctodrilus antipae	Michaelsen, 1891	det. Neubert	
Proctodrilus tuberculatus	Cernosvitov, 1935	det. Neubert	Allolobophora antipai v.
			tuberculata

Danksagung an die Kollegen Manfred Ebersbach i.R. und Matthias Dinse

für die tatkräftige Unterstützung bei den Feldarbeiten.

